浔之漫智控技术(上海)有限公司-西门子总代理商
西门子授权PLC模块 , 电线电缆 , 触摸屏中国总代理商
新乡西门子模块供应代理商



新乡西门子模块供应代理商新乡西门子模块供应代理商新乡西门子模块供应代理商新乡西门子模块供应代理商新乡西门子模块供应代理商

6ES7214-2AS23-0XB8S7-200CN CPU224XPsi,DC/DC/DC,14输入/10输出,集成2AI/1AO
6ES7214-2BD23-0XB8S7-200CN CPU224XP,AC/DC/Rly,14输入/10输出(NPN输出),集成2AI/1AO
6ES7216-2AD23-0XB8S7-200CN CPU226,DC/DC/DC,24输入/16输出
6ES7216-2BD23-0XB8S7-200CN CPU226,AC/DC/Rly,24输入/16输出


网络设备的连接

网络设备通过相互的连接进行通信,这些连接均是主设备和从属装置之间的专用连接。如图6-49所示,不同的通信协议在连接的处理方式上有所不同:

(1)PPI协议使用的是所有网络设备的共享连接。

(2)PPI**协议、MPI和PROFIBUS协议使用的是任意两个通信设备之间的单独连接。

当使用PPI**协议、MPI或PROFIBUS协议时,*二个主设备将不会干扰主设备与从属装置之间已经建立的连接。S7-200 CPU和EM277始终保留一个用于STEP7-Micro/WIN的连接和一个用于HMI设备的连接,其他主设备不能使用这些保留的连接。这样可以确保在主设备使用连接协议(如PPI**协议)时,始终可以将至少一个编程站和至少一个HMI设备连接到S7-200CPU或EM277。

S7-200CPU和EM277模块的容量见表6-12。S7-200的每个端口(端口0和端口1)*多可支持4个单独的连接。所以,不包含共享的PPI连接,S7-200CPU*多具有8个连接。EM277支持*多6个连接。

4.复杂网络的使用

对于S7-200,复杂网络的一个典型特点就是具有多个S7-200主设备,这些主设备使用网络读取(NETR)和网络写入(NETW)指令与PPI网络中的其他设备进行通信。复杂网络还可能存在一些特殊问题,可能使主设备中断与从属装置的通信。

如果网络以较低的波特率运行(如9.6 kbaud或19.2 kbaud),则在传递令牌之前,每个主设备将完成事务处理(读或写)。然而,如果波特率为187.5 kbaud,则主设备将对从属装置发出请求,然后传递令牌,它将使未完成的请求留在从属装置上。

一个具有潜在通信冲突的网络如图6-50所示。在该网络中,站1、站2和站3均是主设备,它们将使用网络读取或网络写入指令与站4进行通信。网络读取和网络写入指令使用PPI协议,这样,所有S7-200均将共享站4中的单个PPI连接。

在此示例中,站1发出对站4的请求。对于19.2kbaud以上的波特率,站1将令牌传递给站2。如果站2试图发出对站4的请求,则站2的请求将被拒绝,因为站1的请求仍然存在。对站4的所有请求都将被拒绝,直到站4完成对站1的响应。只有在响应已经完成之后,另一个主设备才能发出对站4的请求。

为避免站4通信端口的冲突,应设置站4成为网络上的一主设备。站4随后即可发出对其他S7-200的读/写请求,如图6-51所示。

这种设置不但可避免通信中产生冲突,而且也可减少由于具有多台主设备而导致的额络资源占用,使网络运行*为。

然而,对于某些应用场合,不能随意选择减少网络中的主设备数量。当存在多个主设备时,必须对令牌循环时间进行管理,确保网络不*出目标令牌循环时间。令牌循环时间指的是从主设备传递令牌开始到主设备又重新收到令牌为止所花费的总时间。

如果令牌返回到主设备所需要的时间大于目标令牌循环时间,则不允许主设备发出请求。只有在实际令牌循环时间**目标令牌循环时间时,主设备才可发出请求。

S7-200的*高站址(HSA)和波特率设置决定了目标令牌循环时间。HSA和目标令牌循环时间见表6-13。

对于较低的波特率,例如,9.6kbaud和19.2kbaud,主设备在传递令牌之前,将等待对其请求的响应。因为按照扫描时间,处理请求/响应循环将要花费相对较长的时间,所以,当网络上的某主设备得到令牌时,它们具有准备就绪的传送请求。这样,实际的令牌循环时间将增加,且某些主设备将有可能不能处理任何请求。在某些情况下,有可能完全不允许主设备对请求进行处理。

例如,一个具有10个主设备的网络,该网络以9.6 kbaud的波特率传输一个HSA配置为15字节,在此例中每个主设备始终具有准备发送的信息。由表6-13可知,该网络的目标循环时间为0.613s。然而,由表6-11可知,该网络所需要的实际令牌循环时间将为1.48s。因为实际的令牌循环时间大于目标令牌循环时间,所以,在后面的令牌循环之前将不允许某些主设备传输信息。

调整实际令牌循环时间大于目标令牌循环时间这种状况,有两种基本的方法:

(1)通过减少网络上的主设备数目,可以缩短实际令牌循环时间。但随着应用场合变化,有可能不能解决问题。

(2)通过增加网络上的所有主设备的HSA,可以增加目标令牌循环时间。

增加HSA可能引起网络的其他问题,因为这影响S7-200切换到主设备模式并进入网络所占用的总时间。如果使用计时器来确保在*时间内完成网络读取或网络写入指令的执行,则在启动主设备模式并将S7-20**为网络中的主设备期间的延迟可能导致系统提示出现*时。通过减小网络上所有主设备的间隙刷新因子(GUF),可*大限度减小添加主设备所产生的延迟。

由于以187.5kbaud将请求发送并保留在从属装置上所采取的方式,在选择目标令牌循环时间时应留出多余的时间。对于187.5kbaud波特率,实际的令牌循环时间应大约为目标令牌循环时间的1/2。

为确定令牌循环时间,须使用表6-11中的数据来确定网络读取和网络写入指令所需要的时间。HMI设备(如TD200)所需要的时间,按传送16字节的时间查表。通过将网络上所有设备的时间相加来计算令牌循环时间,所需时间*长的情况是所有设备在同-令牌循环期间都希望处理一个请求,这即是网络所需*大令牌循环时间的定义。

例如,设具有4个TD200和4个S7-200的网络以9.6kbaud波特率运行,每个S7-200每秒将10个字节的数据写入另一个S7-200。根据表6-11来计算网络的特定传送时间:

●4个TD200设备传送16字节的数据=0.66 s;

●4个S7-200传送10字节的数据=0.63s:

●总的令牌循环时间=1.29s。

为使该网络有足够的时间来处理一个令牌循环期间的所有请求,可将HSA设置为63(见表6-13)。选择目标令牌循环(1.89s)大于*大令牌循环时间(1.29s),确保每个设备在令牌的每个循环中都可传送数据。

为提高多台主设备网络的可靠性,还可进行下列设置:

(1)改变HMI设备的刷新速率,使得两次刷新之间有*长的间隔。例如,将TD200的刷新速率从“尽可能快”改变为“每秒一次”。

(2)对网络读取操作或网络写入操作进行组合,减少请求数量,以减少处理请求时的网络资源占用。例如,不使用各自读取4字节的两个网络读取操作,而使用一个读取8字节的网络读取操作。因为处理一个8字节的请求所需要的时间远少于处理两个4字节的请求所需要的时间。

(3)调整S7-200主设备的刷新速率,以使其刷新速率**令牌循环时间。

新乡西门子模块供应代理商         新乡西门子模块供应代理商

新乡西门子模块供应代理商,DP电缆,电源模块,交换机


发布时间:2023-08-01
展开全文
优质商家推荐 拨打电话